Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus.

نویسندگان

  • Yun-Fei Lu
  • Robert D Hawkins
چکیده

We previously found that the nitric oxide (NO)-cGMP-cGMP-dependent protein kinase (PKG) signaling pathway acts in parallel with the cAMP-cAMP-dependent protein kinase (PKA) pathway to produce protein and RNA synthesis-dependent late-phase long-term potentiation (L-LTP) and cAMP response element-binding protein (CREB) phosphorylation in the CA1 region of mouse hippocampus. We have now investigated the possible involvement of a downstream target of PKG, ryanodine receptors. L-LTP can be induced by either multiple-train tetanization, NO or 8-Br-cGMP paired with one-train tetanization, or the cAMP activator forskolin, and all three types of potentiation are accompanied by an increase in phospho-CREB immunofluorescence in the CA1 cell body area. Both the potentiation and the increase in phospho-CREB immunofluorescence induced by multiple-train tetanization or 8-Br-cGMP paired with one-train tetanization are reduced by prolonged perfusion with ryanodine, which blocks Ca(2+) release from ryanodine-sensitive Ca(2+) stores. By contrast, neither the potentiation nor the increase in immunofluorescence induced by forskolin are reduced by depletion of ryanodine and inositol-1,4,5-triphosphate (IP3)-sensitive Ca(2+) stores. These results suggest that NO, cGMP, and PKG cause release of Ca(2+) from ryanodine-sensitive stores, which in turn causes phosphorylation of CREB in parallel with PKA during the induction of L-LTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus.

Long-term potentiation (LTP) in the hippocampus has an early phase (E-LTP) that can be induced by one- or two-train tetanization, lasts approximately 1 hr, and is cAMP-dependent protein kinase (PKA) and protein synthesis independent and a late phase (L-LTP) that can be induced by three- or four-train tetanization, lasts >3 hr, and is reduced by inhibitors of PKA and of protein or RNA synthesis....

متن کامل

Effect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats

Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...

متن کامل

Impairment of memory consolidation by galanin correlates with in vivo inhibition of both LTP and CREB phosphorylation.

Changes in the state of CREB phosphorylation and in LTP in the hippocampus have been associated with learning and memory. Here we show that galanin, the neuropeptide released in the hippocampal formation from cholinergic and noradrenergic fibers, that has been shown to produce impairments in memory consolidation in the Morris water maze task inhibits both LTP and CREB phosphorylation in the rat...

متن کامل

Shielding Effect of Ryanodine Receptor Modulator in Rat Model of Autism

Introduction: A neurodevelopmental disorder, autism typically identified with three primary behavioral consequences, such as social impairment, communication problems and limited or stereotypical behavior. Because of its co-morbidity and lack of therapeutic options, autism is a global economic burden. A short chain of fatty acid, propionic acid formed biologically by gut microbiome. Propionic a...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 2002